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Conservation laws in higher-order nonlinear Schrödinger equations
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Conservation laws of the nonlinear Schro¨dinger equation are studied in the presence of higher-order optical
effects including the third-order dispersion and the self-steepening. In a context of group theory, we derive
general expressions for infinitely many conserved currents and charges of a coupled higher-order nonlinear
Schrödinger equation. The first few currents and associated charges are also presented explicitly. Due to the
higher-order effects, the conservation laws of the nonlinear Schro¨dinger equation are violated in general. The
differences between the types of the conserved currents for the Hirota and the Sasa-Satsuma equations imply
that the higher-order terms determine the inherent types of conserved quantities for each integrable case of the
higher-order nonlinear Schro¨dinger equation.
@S1063-651X~98!12811-8#

PACS number~s!: 42.81.Dp, 42.65.Tg, 42.65.Vh
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In the ultrafast optical signal system, higher-order effe
such as the third-order dispersion, the self-steepening,
the self-frequency shift become important if the pulses
shorter thanT0<100 fs@1#. When compared with the grou
velocity dispersion, the third-order dispersion is norma
negligible but produces significant effects of asymmetri
temporal broadening for the ultrashort pulses@2,3#. The self-
steepening effect, which is accompanied by an optical sh
at the trailing edge, also leads to the asymmetrical spec
behavior of the pulses@4#. The self-frequency shift due to
Raman gain stimulated to the long wavelength compone
costing the short wavelength components causes an inc
ing redshift to the propagating pulses@5,6#. These three types
are in general the dominant higher-order effects to be c
sidered for the propagation of femtosecond pulses in a mo
mode optical fiber. For a higher rate transmission of puls
the wavelength division multiplexing@7# also can be taken
into account. In this case, the use of optical pulses with m
tiple field components to accommodate degrees of freed
in distinct polarizations and/or frequencies requires the c
sideration of nonlinear cross-couplings between differ
modes of pulses.

For the description of the multimode transmission, ext
sions of the nonlinear Schro¨dinger equation~NSE! to include
cross-coupling terms are required. The simplest case~vector
NSE! in terms of two field components was first propos
and integrated by the method of inverse scattering transf
@8#. A systematic generalization of the NSE was made o
for the cross phase modulation terms using the structur
symmetric spaces@9# where the vector NSE is a special cas
As mentioned above, the simultaneous inclusion of both
higher-order and the cross-coupling effects leads to the s
on a coupled higher-order nonlinear Schro¨dinger equation
~CHONSE! which is not in general integrable except for sp
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cial cases of coupling constants. The CHONSEs describe
@10# and@11,12# are the limited extensions of the Hirota@13#
and the Sasa-Satsuma@14# equations, respectively. Recentl
by making use of the matrix potential introduced in@15#, we
have proposed a general extension of the Hirota and
Sasa-Satsuma equations and clarified their relationships@16#
in association with the formalism of Hermitian symmetr
spaces@17#.

It is well known that nonlinear equations which can
integrated by the method of inverse scattering transform p
sess an infinite number of conserved quantities. For exam
the NSE has an infinite number of conserved charges in
dition to the ones corresponding to the energy and
intensity-weighted mean frequency. However, the effect
the higher-order and the cross-coupling terms on the con
vation laws has not been considered up to now. In this pa
utilizing the properties of the Hermitian symmetric space,
make a systematic study of the conservation laws in the p
ence of the higher-order and the cross-coupling terms.
first indicate that, except for the energy conservation, ot
conservation laws of the NSE such as the conservation of
intensity-weighted mean frequency do not hold any m
due to the higher-order effects, unless the higher-order te
are of a unique type. In the case of the integrable CHON
we derive general expressions of an infinite number of c
served currents and charges from the Lax pair formulati
From the general expressions, explicit forms of the first f
conserved currents and the associated charges of the H
and the Sasa-Satsuma equations are calculated in a cons
way of reduction. We then explain the correlations of co
servation laws between the two integrable cases of
higher-order extension of the NSE.

In order to illustrate the issue, we first consider the N
including the higher-order terms. In a monomode optical
ber, the propagation of an ultrashort pulse is governed by
higher-order NSE@18#

]̄c5 i ~g1]2c1g2ucu2c!1g3]3c1g4]~ ucu2c!

1g5]~ ucu2!c, ~1!
6746 © 1998 The American Physical Society



e

th
th
m

e
-

an
a
ua

e

ia
lse
rd

q

rg

th
at
d
ud
b

h

n-
An-
here

ark-
an

w-
nitely
the

nd
tem
cal
ral

ed
ch
the

tic
so-
e
er
For
-

E

an

g-

E

t in
ss-
or

ex-

PRE 58 6747CONSERVATION LAWS IN HIGHER-ORDER NONLINEAR . . .
where]̄[]/] z̄ and][]/]z are derivatives in retarded tim
coordinates (z̄5x,z5t2x/v), andc is the slowly varying
envelope function. The real coefficientsg i ( i 51,2,3,4) in
the first four terms on the right hand side of Eq.~1! specify
in sequence the effects of the group velocity dispersion,
self-phase modulation, the third-order dispersion, and
self-steepening. With appropriate scalings of space, ti
and field variables, one can readily normalize Eq.~1! so that
g151, g252, g351 which we assume from now on. Th
remaining coefficientg5 in the last term is complex in gen
eral. The real and the imaginary parts ofg5 are due to the
effect of the frequency-dependent radius of fiber mode
the effect of the self-frequency shift by stimulated Ram
scattering, respectively. It is well known that the above eq
tion becomes integrable ifg452g556 ~Hirota case! @13# or
g4522g556 ~Sasa-Satsuma case! @14#. The physical con-
ditions to observe the femtosecond soliton based on the m
surable optical fiber parameters@19,20# and the existence
even in a medium with an arbitrary dispersion law@21# are
discussed with analytical solutions. Experimentally, the ad
batic compression and the redshift of the ultrashort pu
due to the delayed nonlinear response and the higher-o
dispersion have been demonstrated@22#. Also some other
models with similar types of the higher-order terms in E
~1! are proposed@23,24# with explicit soliton solutions.

In the absense of higher-order terms (g35g45g550),
Eq. ~1! possesses an infinite number of conserved cha
among which the first three charges@25# are

Q15E
2`

`

ucu2dt,

Q25E
2`

`

i ~c* ]c2]c* c!dt, ~2!

Q35E
2`

`

~]c* ]c2ucu4!dt,

where Q1 represents conserved energy, andQ2 the mean
frequency weighted by the intensity of optical pulses. In
conventional NSE where the time and the space coordin
are interchanged,Q1 ,Q2 , andQ3 , respectively, correspon
to conserved mass, momentum, and energy. If we incl
higher-order terms,Qi are not necessarily conserved but su
ject to the relations

]̄Q150,

]̄Q252i ~g41g5!E
2`

`

]ucu2~c* ]c2]c* c!dt, ~3!

]̄Q35~3g412g526!E
2`

`

]ucu2]c* ]cdt.

The calculations indicate that the chargeQ1 which corre-
sponds to energy is conserved for all values ofg4 , g5 while
Q2 and Q3 are conserved providedg41g550 and 3g4
12g556, respectively. Note thatQ2 andQ3 are conserved
simultaneously only for the specific valueg452g556 that
is precisely the Hirota case. It is interesting to observe t
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integrability does not always imply the same types of co
served charges in the presence of higher-order terms.
other integrable case of the Sasa-Satsuma equation, w
g4522g556, in consequence does not haveQ2 andQ3 in
Eq. ~3! as the conserved charges. This result is rather rem
able in view of the fact that integrable equations possess
infinite number of conserved quantities. We will show, ho
ever, that the Sasa-Satsuma equation also possesses infi
many conserved charges of different types other than
ones of the Hirota equation.

In the case where we include both the higher-order a
the cross-coupling nonlinear effects, the propagating sys
is governed by a CHONSE. Without understanding physi
settings, it would be meaningless to write down any gene
expression of the CHONSE. However, as explicitly deriv
in @16#, there exists a group theoretic specification whi
admits a systematic classification of integrable cases of
CHONSE. In the following, we consider the group theore
generalization of the NSE and define the CHONSE in as
ciation with a Hermitian symmetric space. By solving th
linear Lax equations iteratively, we derive an infinite numb
of conserved currents and charges for the CHONSE.
later use, we briefly review the definition of Hermitian sym
metric spaces@9,17# and the generalization of the NS
@16,26# according to the Hermitian symmetric spaces.

A symmetric space is a coset spaceG/K for Lie groups
G.K whose associated Lie algebrasg and k, with the de-
compositiong5k % m satisfy the commutation relations

@k,k#,k, @m,m#,k, @k,m#,m. ~4!

A Hermitian symmetric space is the symmetric spaceG/K
equipped with a complex structure. One can always find
elementT in the Cartan subalgebra ofg whose adjoint action
defines a complex structure and also the subalgebrak as a
kernel, i.e.,k5$VPg: @T,V#50%. That is, the adjoint ac-
tion J[adT5@T,* # is a linear mapJ:m→m that satisfies
the complex structure condition,J252I , or †T,@T,M #‡
52M for MPm. Then, we define a CHONSE as

]̄E5]2Ẽ22E2Ẽ1a~]3E1b1E2]E1b2]EE2!, ~5!

whereE and Ẽ[@T,E# are extended field variables belon
ing to m. ~We restrict to symmetric spacesAIII 5SU(m
1n)/@SU(m)SU(n)U(1)#, CI5Sp(n)/U(n), and DIII
5SO(2n)/U(n) only so that the expression of CHONS
becomes simplified@16#.! The arbitrary constanta may be
normalized to 1 by an appropriate scaling but we keep i
order to exemplify the higher-order effects. Also the cro
coupling effects between different modes of polarizations
frequencies are accommodated in the matrix form ofE which
is determined by each Hermitian symmetric space. For
ample, in the case whereG/K5SU(N11)/U(N), the matri-
cesE andT are represented as

E5S 0 c1 ••• cN

2c1* 0 0

A A

2cN* 0 ••• 0

D ,
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T5S i

2
0 ••• 0

0 2
i

2
0

�

0 ••• 0 2
i

2

D , ~6!

and the CHONSE becomes a higher-order vector NSE,

]̄ck5 i F ]2ck12S (
j 51

N

uc j u2DckG2aFb1S (
j 51

N

uc j u2D ]ck

1b2S (
j 51

N

c j* ]c j Dck2]3ckG , k51,2,. . . ,N. ~7!

This equation is an obvious generalization of Eq.~1! to the
multicomponent case. In a more general point of view,
can be seen from Eq.~7! the CHONSE does not includ
some other physically interesting equations, for example,
four-wave mixing. ~A group theoretic treatment of then-
wave equation is also possible using reductive homogene
space. See, for example, Ref.@9#.! Anyway it is easy to see
that Eq. ~7! with N51 and b15b2523 is precisely the
Hirota equation, which implies that the equation is an e
plicit N-coupled extension in itself. Remarkably, anotherN-
coupled form of the Sasa-Satsuma equation also results
the same CHONSE in Eq.~5! through the consistent reduc
tion @16#.

As mentioned above, Eq.~5! is integrable if b15b2
523 because in such a case the CHONSE admits a
pair. That is, Eq.~5! with b15b2523 arises from the com
patibility condition (@Lz ,Lz̄#50) of the associated linea
equations,

LzC[@]1E1lT#C50,

Lz̄C[@]̄1UK
0 1UM

0 1l~UK
1 1UM

1 !1l2~UM
2 1T!

2al3T#C50,

~8!

which holds for all values of the spectral parameterl. The
entitiesUK

i andUM
i in Lz̄ are given by

UK
0 52EẼ2a@E,]E#, UM

0 5]Ẽ1a~]2E22E3!,
~9!

UK
1 5aEẼ, UM

1 5E2a]Ẽ, UM
2 52aE.

Here, the subscriptsK andM signify that they belong to the
subalgebrak and the remaining complementm, respectively.
It is crucial that the Lax pair given in Eq.~8! covers the
suggested types@10–12# in a generalized formulation. Th
algebraic decomposition can also be extended to a more
eral case including the matrix solutionC5CK1CM with
the properties that@T,CK#50, @T,CM#Pm, and the fol-
lowing multiplication properties:

@T,CK
1 CK

2 #5@T,CM
1 CM

2 #50, @T,CK
1 CM

2 #Pm. ~10!
s

e

us

-

m

x

n-

The adjoint action of the elementT in the Cartan subalgebr
together with the complex structure condition, if applied
the decomposition, lead to a couple of general identities
any M1 ,M2Pm;

@T,M1M2#5M̃1M21M1M̃250, M̃1M̃25M1M2 .
~11!

These identities are useful for many calculations, for e
ample, in deriving conserved currents or in verifying that t
CHONSE in Eq.~5! is equivalent to the compatibility con
dition of the Lax pair in Eq.~8!.

Having presented necessary ingredients, we are n
ready to derive infinitely many conserved currents a
charges of the integrable CHONSE by solving the associa
linear equations in Eq.~8!. In order to make use of the alge
braic properties of Hermitian symmetric spaces, we mak
change of the variableC in Eq. ~8! by

F5Cexp$@lz1~l22al3!z̄#T%, ~12!

which results in the change of the multiplicative termTC to
the commutative term@T,F# in the linear equations. The
adjoint action,@T,F#, allows the splitting of the linear equa
tions for F into the K and theM components as explaine
below. Let us first assume that the linear equations can
solved iteratively in terms of

F~z,z̄,l![ (
n50

`
1

ln
@FK

n ~z,z̄!1FM
n ~z,z̄!#, ~13!

whereFK
n andFM

n denote the decomposition of a coefficie
Fn satisfying the properties in Eq.~10!. Then, thenth-order
equation (n>0) separates into theK and theM components
as

]FK
n 1EFM

n 50, ~14!

]FM
n 1EFK

n 1@T,FM
n11#50, ~15!

while the ]̄ part of the linear equation becomes

]̄FK
n 1UK

0 FK
n 1UM

0 FM
n 1UK

1 FK
n111UM

1 FM
n111UM

2 FM
n12

50, ~16!

]̄FM
n 1UK

0 FM
n 1UM

0 FK
n 1UK

1 FM
n111UM

1 FK
n111UM

2 FK
n12

1@T,FM
n12#2a@T,FM

n13#50. ~17!

In addition, there are equations arising from the posit
powers ofl, which can be given by Eqs.~14!–~17! provided
thatn521,22,23 andFK

n,05FM
n,050 are defined. These

equations can be solved recursively forFK
n , FM

n (n>0)
starting from a consistent set of initial conditions;

FM
0 50, FK

0 52 i I , FM
1 52 iẼ. ~18!

Note that Eq. ~15! can be solved forFM
n11 by using

the complex structure condition, that is,FM
n11

52†T,@T,FM
n11#‡5@T,]FM

n #1ẼFK
n . Therefore FM

n11 is
obtained algebraically providedFK

n andFM
n are determined.
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Contrary toFM
n11 , the other solutionFK

n11 is calculated by
a direct integration of Eq.~14! but overdetermined due to th
additional equation in Eq.~16!. Hence, in order forFK

n in
general to be integrable, the compatibility condition th

@],]̄ #FK
n 50 should be required for the solutionFK

n which is
inherited from Eq. ~8! generating the correspondin
CHONSE. In this case the compatibility condition gives ri
to infinitely many conserved currents labeled by integen

such that] J̄K
n 1 ]̄JK

n 50;

JK
n 52]FK

n 5EFM
n , ~19!

J̄K
n 5 ]̄FK

n 52~]Ẽ1a]2E23aE3!FM
n 2aE]2FM

n

2~E2a]Ẽ!@T,]FM
n #. ~20!

In order to derive the local currents explicitly, we solve t
recurrence relations in Eqs.~14!–~17! with the initial condi-
tions as in Eq.~18!. The first few conserved currents a
listed below:

JK
1 52 iEẼ,

~21!
J̄K

1 52 i @E,]E#1 ia~@]2E,Ẽ#1]Ẽ]E23E3Ẽ!

for n51, and

JK
2 52 i ]FK

1 FK
1 1 iE]E,

J̄K
2 51 i ]̄FK

1 FK
1 2 i ~E]2Ẽ1]Ẽ]E2E3Ẽ!2 ia~E]3E

1@]2E,]E#1]EE322E]EE22E2]EE24E3]E!,
~22!

JK
3 52 i ~]FK

2 FK
1 1]FK

1 FK
2 2 i ]FK

1 FK
1 FK

1 !

1 i ~E]2Ẽ2E3Ẽ!,

J̄K
3 5 i ~ ]̄FK

1 FK
2 1 ]̄FK

2 FK
1 2 i ]̄FK

1 FK
1 FK

1 !1 i ~E]3E2]E]2E

1]EE322E]EE22E2]EE22E3]E!2 ia~E]4Ẽ

1]2E]2Ẽ1]Ẽ]3E25E3]2Ẽ2E2]2EẼ23E]2ẼE2

1]2ẼE322]Ẽ]EE22]ẼE]EE22]ẼE2]E

23E]E]EẼ25E]EE]Ẽ23E2]E]Ẽ14E5Ẽ! ~23!

for n52 andn53, respectively. Note that currentsJK
n and

J̄K
n for n>2 contain nonlocal termsFK

m with m,n. Fortu-
nately, these nonlocal terms can be separated from the
servation law if we consider a scalar expression of the c
served current by taking an appropriate trace as follows:

SK
n 5Tr~PJK

n !, S̄K
n 5Tr~PJ̄K

n !. ~24!

The parameterP is any matrix entity which commutes wit
matricesFK

m , or we may chooseP5c1I 1c2T for arbitrary
constantsc1 andc2 . For instance, we have forn52,3

SK
2 52]FTr PS i

2
~FK

1 !2D G1Tr P~ iE]E!,
t

n-
-

S̄K
2 5 ]̄FTr PS i

2
~FK

1 !2D G1Tr P$2 i ~E]2Ẽ1]Ẽ]E2E3Ẽ!

2 ia~E]3E1@]2E,]E#26E3]E!%,
~25!

SK
3 52]„Tr P$ i @FK

1 FK
2 2 1

3 ~FK
1 !3#%…

1Tr P$ i ~E]2Ẽ2E3Ẽ!%,

S̄K
3 5 ]̄„Tr P$ i @FK

1 FK
2 2 1

3 ~FK
1 !3#%…,1Tr P$ i ~E]3E2]E]2E

24E3]E!2 ia~E]4Ẽ1]2E]2Ẽ1]Ẽ]3E28E3]2Ẽ

12]2ẼE31E2]Ẽ]E2]ẼE]EE1]ẼE2]E

25E]ẼE]E14E5Ẽ!%. ~26!

The derivations show that the nonlocal terms appear as
derivative terms thus they are conserved separately. D
ping the nonlocal terms and integrating over the time co
dinate, we obtain an infinite number of global charges wh
are conserved in space, i.e.,]̄Qn50 where

Qn[E
2`

1`

dtSK
n . ~27!

For the case ofG/K5SU(N11)/U(N) as mentioned in Eq.
~6!, we work out explicitly and obtain the conserved charg
for the Hirota case

QH
1 5E

2`

1`

dt(
k51

N

ck* ck ~28!

for n51 and

QH
2 5E

2`

1`

dt(
k51

N

i ~ck* ]ck2]ck* ck!, ~29!

QH
3 5E

2`

1`

dtF (
k51

N

]ck* ]ck2S (
k51

N

ck* ckD 2G ~30!

for n52 andn53, respectively. Conserved charges for oth
cases of integrable CHONSE can be similarly obtained fr
the specification ofE andT as classified in@16#.

As noted in Eq.~3!, the types of chargesQ2 andQ3 are
not conserved in the Sasa-Satsuma case. Nevertheless
Sasa-Satsuma equation equivalently possesses infin
many conserved charges of different types as well. Th
seemingly contradicting characteristics can be explained
the fact that the Sasa-Satsuma equation arises from the
creteZ2 reduction of the SU(3)/U(2) CHONSE combined
with a point transformation@16#. In this case, matricesE and
T can be denoted as
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E5S 0 c c*

2c* 0 0

2c 0 0
D , T5S i

2
0 0

0 2
i

2
0

0 0 2
i

2

D .

~31!

Since the chargeQn in Eq. ~27! is invariant under the poin
transformation, we can also calculate the first few conser
charges of the Sasa-Satsuma equation using the expres
E andẼ[@T,E# given in Eq.~31!. The resulting charges o
the Sasa-Satsuma equation are

QS
15E

2`

1`

dtc* c,

QS
250, ~32!

QS
35E

2`

1`

dt@3]c* ]c26~c* c!22 i ~c* ]c2]c* c!#.

If the charges in Eq.~32! are compared with those of th
Hirota type in Eq.~2! @or equivalently Eqs.~28!–~30! for
N51#, we note that the charge forn51, which corresponds
to energy, is the same but other charges are of diffe
types. Remarkably, in Eq.~32! the charge forn52 turns out
to be trivial while the charge forn53 is a new type that is
seemingly a combination of charges forn52,3 in Eq. ~2!.
From Eq. ~1! with normalized coefficientsg15g2/25g3
es

.

M

d
ions

nt

51, one can readily confirm that the currentSS
353]c* ]c

26(c* c)22 i (c* ]c2]c* c) is conserved only ifg41g5
53 and 3g412g5512. Solving the equations results ing4
522g556 that definitely leads to the Sasa-Satsuma case
be compared with Eq.~3! for the Hirota case. Finally, we
point out that the present formalism can be extended to o
physically interesting cases, such as to the case where
self-steepening effect is dominant, or to the case of d
solitons which requires an appropriate renormalization of
conserved charges@27#.

To summarize, using the properties of Hermitian symm
ric space we have constructed the Lax pair formalism o
coupled higher-order nonlinear Schro¨dinger equation and de
rived general expressions of an infinite number of conser
tion laws. Remarkably, the conserved currents and cha
for both the Hirota and the Sasa-Satsuma equations are
culated from the general expressions, accompanying the
duction procedure. We have shown that, except for the
rota case, the current conservations of the nonlin
Schrödinger equation are in general broken by the high
order effects. The types of conserved currents and cha
for the Sasa-Satsuma case are different from the types fo
Hirota case except for the energy conserved irrespectiv
all the higher-order effects. These differences may le
scope for more physical explanations and applications in
further study of higher-order effects including numeric
analysis.
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